A radical for right near-rings: The right Jacobson radical of type-0

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A radical for right near-rings: The right Jacobson radical of type-0

The notions of a right quasiregular element and right modular right ideal in a near-ring are initiated. Based on these J 0(R), the right Jacobson radical of type-0 of a near-ring R is introduced. It is obtained that J 0 is a radical map andN(R)⊆ J 0(R), whereN(R) is the nil radical of a near-ring R. Some characterizations of J 0(R) are given and its relation with some of the radicals is also di...

متن کامل

Kurosh-Amitsur Right Jacobson Radical of Type 0 for Right Near-Rings

By a near-ring we mean a right near-ring. J 0 , the right Jacobson radical of type 0, was introduced for near-rings by the first and second authors. In this paper properties of the radical J 0 are studied. It is shown that J 0 is a Kurosh-Amitsur radical KA-radical in the variety of all near-rings R, in which the constant part Rc of R is an ideal of R. So unlike the left Jacobson radicals of ty...

متن کامل

Hereditary right Jacobson radicals of type-1(e) and 2(e) for right near-rings

Near-rings considered are right near-rings. In this paper two more radicals, the right Jacobson radicals of type-1(e) and 2(e), are introduced for near-rings. It is shown that they are Kurosh-Amitsur radicals (KAradicals) in the class of all near-rings and are ideal-hereditary radicals in the class of all zero-symmetric near-rings. Different kinds of examples are also presented.

متن کامل

Rings and Algebras the Jacobson Radical of a Semiring

The concept of the Jacobson radical of a ring is generalized to semirings. A semiring is a system consisting of a set S together with two binary operations, called addition and multiplication, which forms a semigroup relative to addition, a semigroup relative to multiplication, and the right and left distributive laws hold. The additive semigroup of S is assumed to be commutative. The right ide...

متن کامل

On the Nilpotency of the Jacobson Radical of Semigroup Rings

Munn [11] proved that the Jacobson radical of a commutative semigroup ring is nil provided that the radical of the coefficient ring is nil. This was generalized, for semigroup algebras satisfying polynomial identities, by Okniński [14] (cf. [15, Chapter 21]), and for semigroup rings of commutative semigroups with Noetherian rings of coefficients, by Jespers [4]. It would be interesting to obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2006

ISSN: 0161-1712,1687-0425

DOI: 10.1155/ijmms/2006/68595